

Escape from Planet Mars: Simulation of a Mars
Colony and Evacuation

Designed by:
Kourtney Ramseur

Tunde Ballack
Kaifi Jamil

Babatunde Adekoya

(Report by Kaifi Jamil)

COSC 729: Virtual Reality I with Dr. Sharma
May 5, 2015

Introduction

 Mars has been the subject of exploration by NASA and other space agencies during the

past decade and a perennial interest for futurists, writers, and scientists. More recently there is

even speculation about what efforts would be needed to establish a long-term colony of

humans on Mars for research purposes. We were inspired by these interests to create the

virtual environment for a small Mars colony with futuristic (but plausible) buildings on a Martian

landscape with several avatars to represent colonists. For interactivity we decided to set up an

evacuation scenario in which the avatars panic and the main user must walk through rooms and

hallways of buildings to collect a few key items. Once the user collects the items he has

completed the evacuation mission and “wins” the scenario.

Goals and Objectives

 Firstly, we felt that such a project idea would be fun to design because some of us are

science-fiction enthusiasts. Creating a virtual colony on Mars allows us to use the Vizard,

Sketchup and 3DS Max skills we acquired earlier in the semester in a new way: representing a

man-made structure that is not even on Earth. Secondly, we decided to use our knowledge of

university campus evacuation in this new extraterrestrial setting. The evacuation is, however, a

simple game that is not meant to simulate all the realistic concerns that would arise during a

real threat on the colony. We do not have the expertise or resources to determine that in the

limited time we had to complete the project. The user who plays through the scenario should

be able to have fun with the experience and appreciate both the internal setting of the rooms

and halls as well as the external landscape of a red desert.

Modeling & Programming

 As can be observed from playing through the simulation and viewing the screenshots,

the virtual environment is a collection of buildings and symbols on a Martian landscape. It is

meant to be a reasonable replica of what a Mars colony could look like but it may not contain

the exact number of apartment rooms, labs, indoor gardens, and other facilities that would be

necessary to sustain an actual population in future reality. Our first step in modeling the

environment was to search for buildings and the external landscape. We found most of these

through the 3D Warehouse in Sketchup, a popular 3D modeling software. We found the

smaller items and furniture from SketchUp and 3DS Max as well and positioned them inside the

buildings using SketchUp and the Inspector in the Vizard IDE. We added textures for some of

the buildings while leaving others’ walls as plain, believing that a Mars Colony would not try to

appear too aesthetically pleasing in the first place. We found the textures we did use through

SketchUp and in some cases simply from website searches through Google. We used Sketchup

as well as Vizard to scale the buildings to a size that would be appropriate for the Colony and

relative to human colonists, but it was difficult to do this accurately.

 We used the Vizard IDE to enhance the models and environment with sound files, avatar

animations, interactivity of picking up items, sensors, and rewarding the user when he or she

successfully finishes the evacuation.

 Audio files, we included sounds for a mandatory alarm, reward sound for when an item

is collected, background music borrowed from the Japanese video game Final Fantasy

XIII (the battle theme), an avatar screaming “run for your lives” when clicked, an injury

sound for another avatar, and the Star Wars theme if the user finishes the game in time.

 Sensors: We set up proximity sensors around the key items so that when the user walks

close to the item the item will disappear and the item counter will increase by one.

o A timer sensor keeps track of how many seconds are left to complete the

evacuation. When the timer reaches five seconds remaining the color of the

numbers change and flash.

o There are touch sensors on two avatars. One of them raises his hands and

shouts when clicked (panic!). The other sensor touch sensor causes a male

avatar to fall down and the female next to him cheers.

 Animations: The avatars in the scene perform actions when the e, f, and r buttons are

pressed by the user.

 Avatars: The avatars used are the inbuilt ones from the Vizard IDE.

 Evacuation threat: We found objects to represent aliens that were modeled on “Skitters”

from the TV series Fallen Skies.

 Sky and environmental map: For most of the simulation the sky outside buildings will

appear dark like outer space, with a few moons and the Earth visible to the viewer. For

the end scene we used a blue sky because we did not know how to display a “outer

space” sky for a cube texture.

Problems & Future Improvement

 Some of the difficulties we faced with the programming aspect of this project included

connecting one scene with another when the user enters a new room, maintaining the correct

score and timer when transitioning scenes, scaling the building and items, finding appropriate

items for the user to collect, and implementing the ability to shoot the aliens invading the

colony on the Mars landscape. For the alien challenge we were unable to implement a way for

the user to shoot the aliens. The lasers do not recognize when they have hit an alien, the alien

does not disappear from the screen, and the user’s health bar does not lose points if one is hit

by an alien.

 Our suggestions for improvement would be to make the alien battle more realistic and

workable so that lasers cause each alien to disappear and they also affect the user if they

collide with the user. Another improvement would be to find and animate custom avatars

wearing space suits when they are outside the colony buildings. It would be helpful if there

was a way to scale the buildings more accurately than to rely on the programmer’s visual

guesswork. The simulation would be more realistic if one could find more buildings to include

and the right type of buildings, such as a bio-dome or indoor garden.

 Although this virtual environment was fairly simple and completed on a modest scale for

a class project, the user could feel more immersed in the environment if interfacing with it

through a Head-Mounted Display. We believe that NASA or other space agencies should

attempt to create virtual colonies in order to realistically plan settlements, precautions, and

human needs.

Screenshots & Code Snippets

Code Snippet 1:

################ Movement Control Code ########################

#Script to control viewpoint with keyboard arrow keys
MOVE_SPEED =5000
TURN_SPEED = 60

def updatecar():
 #move view forward and backward
 if viz.key.isDown(viz.KEY_DOWN):
 view.move([0,0,MOVE_SPEED*viz.elapsed()],viz.BODY_ORI)
 if viz.key.isDown(viz.KEY_UP):
 view.move([0,0,-MOVE_SPEED*viz.elapsed()],viz.BODY_ORI)
 if viz.key.isDown(viz.KEY_PAGE_UP):
 view.move([0,MOVE_SPEED*viz.elapsed(),0],viz.BODY_ORI)
 if viz.key.isDown(viz.KEY_PAGE_DOWN):
 view.move([0,-MOVE_SPEED*viz.elapsed(),0],viz.BODY_ORI)

 #rotate body of view left and right
 if viz.key.isDown(viz.KEY_RIGHT):
 view.setEuler([TURN_SPEED*viz.elapsed(),0,0],viz.BODY_ORI,viz.REL
_PARENT)
 elif viz.key.isDown(viz.KEY_LEFT):
 view.setEuler([-
TURN_SPEED*viz.elapsed(),0,0],viz.BODY_ORI,viz.REL_PARENT)
vizact.ontimer(0,updatecar)

Code Snippet 2:

############# Avatars & Animation added to Environment #############
avatar1 = viz.addAvatar('vcc_male.cfg')
avatar1.setScale(700,700,700)
avatar1.setPosition(-7000, 1490, -15000)
avatar1.state(1)

def Avatar1():
 #vizact.onkeydown('r',runDelay)
 walk1 = vizact.walkTo([-8000, 1550, -17500], walkSpeed= 750, verb =
'run')
 walk2 = vizact.walkTo([-9000, 1550, -17000], walkSpeed= 750, verb =
'run')
 walk3 = vizact.walkTo([-9000, 1550, -17000], walkSpeed= 750, verb =
'run')
 walk4 = vizact.walkTo([-11000, 1550, -18000], walkSpeed= 750, verb =
'run')
 walk5 = vizact.walkTo([-13000, 1550, -21000], walkSpeed= 750, verb =
'run')
 walk6 = vizact.walkTo([-7000, 1490, -15000], walkSpeed= 750, verb =
'run')
 avatar1.addAction(walk1)
 yield viztask.waitTime(5)
 avatar1.addAction(walk2)
 yield viztask.waitTime(5)
 avatar1.addAction(walk3)
 yield viztask.waitTime(5)
 avatar1.addAction(walk4)
 yield viztask.waitTime(5)
 avatar1.addAction(walk5)
 yield viztask.waitTime(5)
 avatar1.addAction(walk6)
viztask.schedule(Avatar1())

